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This paper presents a method to analyze paired-comparison data including either binary or graded

ordinal responses, with or without ties. The proposed method can use either of two classical choice

models: (1) Thurstone case V, which assumes a Gaussian distribution of the sensory variables

underlying listener decisions, or (2) the Bradley-Terry-Luce (BTL) model, which assumes a logistic

distribution. The analysis method was validated using simulated paired-comparison experiments

with known distributions of the sound-quality parameters in the simulated population from which

“participants” were generated at random. The validation indicated that the Thurstone and BTL

models give similar results close to the true values. The estimated credibility of a quality difference

was slightly higher with the BTL model. The analysis results showed dramatically better precision

when the response data included graded ordinal judgments instead of binary responses. Allowing

tied responses also tended to improve precision. The method was also applied to data from a real

evaluation of hearing-aid programs. The analysis revealed clinically interesting results with high

statistical credibility, although the amount of test data was limited.
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I. INTRODUCTION

Subjective quality evaluations are necessary in all applica-

tions of audio processing and audio coding systems that intro-

duce some distortion. The present study is focused on sound

quality evaluations of hearing aids or similar equipment, but

subjective rating methods are also widely used in evaluations

of speech coders for telecommunication (e.g., Grancharov and

Kleijn, 2008) and other multi-media applications.

Standard procedures have been defined for quality eval-

uations in telecommunications (ITU, 2003). Two psycho-

physical methods are commonly used (IEEE, 1969): (1)

absolute magnitude ratings, and (2) paired-comparison rat-

ings. In these applications, the purpose is usually to measure

quality degradations caused by coding and transmission, and

the processed sound can be compared to the perfect original

version.

In evaluations of subjective quality of, e.g., different sig-

nal processing strategies in a hearing aid, it is impossible to

define a perfect “original” version. Here, the only possible

way is to compare different systems, none of which has perfect

quality for the user. Such comparisons are still sufficient to

determine if a new hearing aid algorithm gives better subjec-

tive sound quality than some other existing state-of-the-art

variant. In these applications, the paired-comparison procedure

is useful.

In paired-comparison procedures, each presentation

includes two test items, and the test participant indicates

which of the items is better in terms of the specified percep-
tual attribute being investigated. The perceptual attribute

could be, e.g., “speech clarity,” “sound quality,” or “general

preference,” or any other quality defined by the test instruc-

tions. This method can be applied even if the difference

between tested systems is so small that it is just barely

detectable.

Listeners may be required to make graded judgments of

the perceived difference between the items in each presented

pair, as proposed by Dillon (1984), or to give only a binary
response, as assumed in the classical theoretical papers

(Bradley and Terry, 1952; Thurstone, 1927). It has not yet

been scientifically established which of these methods gives

the most accurate results. Most computational analysis meth-

ods only allow binary data (Cattelan, 2012). It is also an

open research question whether forced-choice judgments

should be required. Allowing tied judgments, i.e., including

a “No difference” response alternative, probably makes the

procedure subjectively more pleasant for participants.

However, a recent review (P�erez-Ortiz and Mantiuk, 2017)

noted that the use of tied responses “is a controversial

issue…, still disputed and researched.”

The application of paired comparisons for hearing-aid

evaluation was reviewed by Amlani and Schafer (2009).

They presented the historical background, theoretical princi-

ples, and clinical usefulness of paired comparisons. Paired

comparisons in the field using cellular-phone apps for data

recording is an evolving trend for hearing-aid evaluations,

by so-called Ecological Momentary Assessment (EMA)

methods (e.g., Smeds et al., 2019). Such experiments gener-

ate large amounts of data, including subsets of data from var-

ious listening conditions. There may be widely different

amounts of data from different participants and situations.

A simple way to quantify the results of a paired-

comparison evaluation is to record the “win counts”, i.e.,

how many times each tested object was ranked higher than a

competing item. This method has two main problems
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(P�erez-Ortiz and Mantiuk, 2017): (1) In order to get fair and

balanced win counts, every test object must be compared to

every other object equally many times, and all test partici-

pants should make the same number of comparisons. (2)

Win counts provide only an ordinal ranking of the tested

objects but do not reflect the magnitude of the perceived

difference between objects.

For these reasons, most paired-comparison studies have

used probabilistic scaling models to analyze the data. The

resulting quality measures are estimated on a well-defined

objective interval scale, although all the primary paired-

comparison data are necessarily subjective, with only ordinal

properties. There is a vast amount of literature on such analy-

sis models, all based on one of two classical variants:

Thurstone (1927) presented the first model and emphasized

its relation to psycho-physical discrimination tests. The other

model was first proposed by Zermelo (1929) for the analysis

of chess tournaments and was later independently re-invented

by Bradley and Terry (1952), who exemplified its use in a

taste-testing experiment with pork roasts from pigs fed on

different diets. This later model variant is often referred to as

the “Bradley-Terry-Luce (BTL)” model because Luce (1959)

presented an axiomatic motivation for the model structure.

The mathematical theory behind both models, estimation

methods for model parameters, and some later model exten-

sions will be briefly reviewed in Sec. II.

We now present a novel approach that extends previous

methods in several ways. To our knowledge, this is the first

fully Bayesian analysis method that allows binary or graded

responses from paired comparisons, with or without ties,

using either the Thurstone or the BTL framework, and also

allows for the possibility that each participant might interpret

the ordinal response categories in different ways. A separate

model is adapted to the data for each participant, and these

individual models are also hierarchically influenced by a

model adapted for the population from which the partici-

pants were recruited. The individual models can include sep-

arate quality parameters for the tested objects in different

test conditions. The proposed method has no requirements

on the number of presentations. The Bayesian analysis result

automatically quantifies the statistical reliability for the

given amount of raw test data.

In addition to defining the analysis model, the present

study will answer the following main research questions:

(1) Is there an advantage of using either the Thurstone or the

BTL model for the analysis?

(2) Can more precise results be obtained from tests allowing

graded differences rather than binary responses?

(3) Will the estimated results get more or less precise if

judgment “ties” are allowed, i.e., responses like “No

preference”?

(4) Can a limited amount of individual paired-comparison

data be used to predict perceptual differences for the

population from which the test participants were

recruited?

The current study is focused on paired comparison for

evaluation of sound-processing features. Procedures for

individual fine-tuning of those features may also use paired

comparisons, but that application is outside the scope of this

study.

II. THEORY — MODELS AND ESTIMATION METHODS

This section briefly reviews the Thurstone and the BTL

models for paired-comparison data. We extend both models

to include graded difference magnitudes, and allow each test

participant to use different criteria for their grading. We then

propose a hierarchical Bayesian estimation procedure to esti-

mate individual and population parameters for either of the

two model variants.

In both the Thurstone and the BTL models, the listener’s

response to a presented pair (A, B) is determined by the out-

come of a sensory random variable XAB with a probability

distribution that depends only on the difference between

some unknown quality parameters lA and lB for the two

objects. The probability for the event that the participant

ranks object B higher than A in a binary forced-choice trial

is defined by the cumulative distribution function F( ) of the

decision variable, as

P “B > A”jlA; lB½ �
¼ P XAB > 0jlA; lB½ � ¼ F lB � lAð Þ: (1)

Thus, the quality difference lB – lA is objectively defined on

an interval scale by the function F( ) and the corresponding

response probability. Although the response probabilities

cannot be directly observed, it is possible to estimate values

for the model parameters lA and lB, and similar parameters

for other tested objects, in agreement with the complete set

of paired-comparison responses. It should be noted that this

formal definition of the quality scale does not require that

the participants give only binary responses. The quality

parameters can be estimated in a similar way based on

graded ordinal responses, as exemplified in Fig. 1 and for-

mally defined in Sec. II C 1. A model with several decision

thresholds was used already by Garner (1952) and Durlach

and Braida (1969) for intensity discrimination experiments

and later proposed by Agresti (1992) for paired comparisons.

Figure 1 also illustrates how the use of threshold parameters

conveniently allows for “Equal” responses, as proposed by

Rao and Kupper (1967) using a different parameterization

restricted to the BTL model.

Since paired-comparison tests can only reveal differ-
ences between objects, the zero point of the quality scale is

arbitrary. One of the tested objects may always be placed at

the zero point of the scale.

A. The Thurstone model

The Thurstone model is closely related to psycho-

physical measurements of Just Noticeable Differences (JND)

in the sense that the quality measures for the tested objects

are placed on a “Cumulative-JND” scale. The scale is some-

times called “Cumulative-d-prime” because the detectability

index d0 is used to define the JND. The detectability index d0

is derived from general signal detection theory as applied to

psychophysical experiments (Green and Swets, 1988). The
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Cumulative-JND scale also has a long history of use as an

objective scale of loudness based on intensity discrimination

(Allen and Neely, 1997; Durlach and Braida, 1969; Houtsma

et al., 1980; Garner, 1952; Riesz, 1933).

For the Thurstone (case V) model, we assume that the

presented objects A and B yield two independent Gaussian

sensory variables ZA and ZB with means lA and lB, both

with unity variance. (The standard deviation is just an arbi-

trary scale factor, so assuming unity is no loss of generality.)

The difference variable XAB ¼ ZB � ZA is then also Gaussian

with mean lAB ¼ lB � lA and variance r2
AB ¼ 2. Thus, the

function in Eq. (1) is

FðxÞ ¼ U x=
ffiffiffi
2
p� �

; (2)

where U( ) is the standard Gaussian cumulative distribution

function.

Although Thurstone (1927) explicitly warned against

interpreting the model parameters as real physical quantities,

it is tempting to consider each decision as the result of some

neural activity in the listener’s brain. Since the decision is

influenced by a very large number of independent random

neural events, it is plausible to assume that the underlying

sensory variable has a Gaussian distribution, according to

the Central Limit Theorem in probability theory.

B. The BTL model

The BTL model (Luce, 1959; Bradley and Terry, 1952)

differs from the Thurstone model only by using a logistic
distribution for the decision variable, with the cumulative

distribution function in Eq. (1) defined as

FðxÞ ¼ 1

1þ e�x
: (3)

It may seem strange to assume that some neural activity in

the listener’s brain should follow a logistic distribution. This

model assumption cannot be motivated by reference to the

Central Limit Theorem. Instead, Luce (1959) showed that

the BTL model structure follows logically from a plausible

“choice axiom.” He also noted the similarity between the

Thurstone and BTL models and argued that the Gaussian

and logistic distributions are so similar that the two models

might be nearly equivalent for practical purposes. The

similarity was also explored by Tsukida and Gupta (2011).

Both models can also be equivalently formulated in the

framework of cumulative link models for ordinal regression

(B€urkner and Vuorre, 2019), using either a “probit”

(Thurstone) or a “logit” (BTL) link function.

The standard Thurstone and BTL models both enforce a

uni-dimensional scale for all judgments. This might be unre-

alistic in some applications where participants may focus on

different quality aspects depending on which objects are pre-

sented (e.g., Zimmer et al., 2004). If the judgments are actu-

ally determined by multi-dimensional sensory impressions,

the responses may show systematic intransitivity, e.g., A>B,

B>C, and C>A. The BTL model has been extended to

allow several perceptual dimensions for each object

(Tversky, 1972). This extension would be more difficult to

apply to the Thurstone model structure, but, on the other

hand, the BTL extension cannot handle graded responses.

Wickelmaier and Schmid (2004) developed a MATLAB pro-

gram to estimate model parameters using the multi-

dimensional BTL model. This program was recently applied

to evaluations of hearing instruments (Laugesen et al., 2015),

although it is not clear if the multi-dimensional feature of the

model was actually needed in that application.

C. Bayesian parameter estimation

Conventional maximum-likelihood (ML) estimation of

paired-comparison model parameters might have no well-

defined solution for some input data. For example, what if a

subject consistently responds “B�A” for every presentation

of (A, B)? Then, the ML estimate of parameters as in Fig. 1

would be lB – lA !1, and s1 ! s0 ! 0. Therefore, it is

necessary to apply a weakly informative prior distribution for

the parameters. A feasible point estimate of the model param-

eters is then the maximum a posteriori probability (MAP)

solution, as proposed by Dahlquist and Leijon (2003).

In contrast, the goal of a fully Bayesian approach is to

estimate the complete posterior distribution of all model

parameters, given the observed data set, i.e., not only a sin-

gle typical point of that distribution. Thus, the Bayesian

result automatically includes a reliability measure. We now

propose a new hierarchical Bayesian model with estimation

of all model parameters jointly for each individual partici-

pant and for the population from which test participants

were recruited.

1. Individual response probabilities

In a paired-comparison experiment, we have a set

fA;B;C;…g of two or more sound “objects,” i.e., classes of

sound stimuli, from which the two sounds (Sp1,Sp2) in the

FIG. 1. (Color online) Example of a conditional probability density function

of the sensory variable XAB that determines the response to a single paired-

comparison presentation (A, B), given a true quality difference lB – lA ¼ 1.2

d-prime units. Decision intervals are indicated for one experiment with only

forced-choice binary responses “A>B” or “A<B,” and for another experi-

ment allowing five graded response alternatives, “A¼B”, “A<B”, “A�B,”

etc., with response thresholds defined by parameters s0 and s1.
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pth presented pair are selected. The graded ordinal response

to the p-th presentation can always be encoded by an integer

Rp 2 f0;61;62;…;6Mg, where M represents the largest

difference grade. When, e.g., (Sp1,Sp2)¼ (A,B) as in Fig. 1,

Rp¼ 0 would mean “A¼B”, and Rp¼þ2 could mean

“A�B”.

The log-probability of any response is calculated as

LðRpÞ ¼
ln P sRp�1 < Xp � sRp

� �
; Rp > 0;

ln P �s0 < Xp � s0½ �; Rp ¼ 0;

ln P �s�Rp
< Xp � �s�Rp�1

� �
; Rp < 0;

8>><
>>:

(4)

where s ¼ ðs0; s1;…; sM ¼ 1Þ is a strictly increasing

sequence of thresholds for the decision variable Xp, as exem-

plified in Fig. 1. In a forced-choice experiment, the response

Rp¼ 0 is not allowed, and s0 � 0. Otherwise, except for the

outermost limit sM¼1, the thresholds are considered as

free model parameters, assumed to have the same values

across all presentations for each participant, but the values

may differ among individuals. Given the individual quality-

parameter difference dp ¼ lSp2
� lSp1

and the individual

thresholds, the response log-likelihood for this listener is cal-

culated as

LðRpjl; sÞ ¼ ln FðsRp
� dpÞ � FðsRp�1 � dpÞ

� �
; (5)

in case Rp > 0 and similarly for the other response cases.

Assuming that responses are conditionally independent,

given the model, the total log-likelihood for all responses

from the listener is just the sum across presentations.

It should be noted that this model imposes no

requirements on the number of presentations for each

pair, or for any listener. If more than two systems are

being compared in an experiment, it is not even neces-

sary that all possible combinations are presented. For

example, if three systems, A, B, C, are evaluated, it is

computationally sufficient to have results for pairs (A, B)

and (B, C), and no direct comparisons of (A, C). Of

course, the reliability of the analysis results will improve

if all combinations are included, and if there are many

presentations of each combination. It is also advisable to

balance the presentations, with blinding, such that (A, B)

and (B, A) are presented equally often and in randomized

order, unknown to the listener.

2. Individual response thresholds

To ensure that the thresholds sm form a strictly increas-

ing sequence, and for numerical stability, it is convenient to

map the response intervals to the range [0,1] using the logis-

tic distribution function F( ) from Eq. (3), as

2FðsmÞ � 1 ¼

Xm

i¼0

egi

XM

i¼0

egi

: (6)

Here, the parameters g ¼ ðg0;…; gm;…; gMÞ are logarithms

of the relative interval widths in this mapped range. The

inverse mapping defines the boundaries as

smðgÞ ¼ ln

XM

i¼0

egi

 !
þ
Xm

i¼0

egi

XM

i¼0

egi

 !
�
Xm

i¼0

egi

: (7)

Adding a constant to all elements in g does not change the

resulting thresholds, so the Mþ 1 values actually define only

M free interval boundaries. In case of forced-choice trials,

s0¼ 0, and g0¼ –1. With binary forced-choice data the

interval limits are fixed at s0¼ 0 and s1¼1, so the thresh-

olds have no influence and can be omitted from the model.

3. Individual vs population models

Let Un ¼ ð…; lnit;…; gnm;…ÞT denote the column vec-

tor of all model parameters for the nth listener in a group of

N test participants. Here, lnit is the quality parameter for the

ith tested object in the tth test condition, for i ¼ 1;…; I � 1,

excluding the fixed values ln,0,t � 0. The parameters gnm;
m ¼ 0;…;M define the individual listener’s response thresh-

olds by Eq. (7). A corresponding parameter vector is defined

for the mean in the population from which test participants

are recruited.

The distribution of individual parameters is adapted to

the response data from each listener together with a

Gaussian prior density conditional on the population parame-

ters, as defined in Eq. (A1) in Appendix A. The population

model is simultaneously adapted to all the individual results

together with a Gaussian-gamma prior density defined in

Eq. (A2) for the population parameters.

This model structure is somewhat similar to the hierarchi-

cal model proposed by B€ockenholt (2001) for the BTL model.

Tsai and B€ockenholt (2002) used a similar approach with the

Thurstone model and allowed ordinal responses but still

assumed only a single set of threshold parameters for all par-

ticipants. Cattelan (2012) reviewed several models and soft-

ware packages allowing individual variations in quality values,

still only deriving point estimates for all parameters and

assuming identical response thresholds for all participants.

4. Variational model inference

As described in Appendix B, we use variational learning

(e.g., Bishop, 2006, Chap. 10) to derive approximate poste-

rior density functions qðUnÞ; n ¼ 0;…;N � 1, for the param-

eters of each individual test participant, as well as a separate

posterior Gauss-gamma density function qðV;KÞ for the

population mean V and precision (inverse variance) K, given

all observed data. Although the participant models qðUnÞ are

formally independent, the population model has a regulariz-

ing influence on all the individual models.

5. Predictive distributions

The trained models are used to calculate three predictive

distributions as defined in Appendix C:

J. Acoust. Soc. Am. 146 (5), November 2019 Leijon et al. 3177



(1) for a random individual in the group of participants
(used in Fig. 4),

(2) for a random individual in the population from which

the participants were recruited (used in Figs. 2, 3, and 5),

(3) for the population mean (used in Figs. 2 and 5)

The predictive distributions are used to evaluate the

joint credibility for combinations of single hypotheses, as

described by Leijon et al. (2016, Appendix C).

III. EXPERIMENTAL METHODS

In order to quantify the precision of the analysis results,

it is necessary to evaluate the difference between estimated

model parameters and the corresponding true parameter val-

ues. The only way to do this is to use simulated paired-

comparison experiments, because the true values are, of

course, never known in real experiments. An analysis of data

from a real study is also included to exemplify how the pro-

posed method can reveal interesting results even with a

rather small amount of data.

A. Simulated paired-comparison trials

Several types of computer-simulated paired-comparison

experiments were performed as described in the following

sections. All the simulations included two or three different

“hearing aids,” evaluated by groups of N 2 f5; 10; 20; 30g
simulated “listeners,” each performing K 2 f2; 4; 8; 10g rep-

licated judgments for each pair of objects. The “listeners”

were drawn from a population in which the means of the

true quality parameters were fixed, and the quality parame-

ters of each individual were set to deviate from the popula-

tion mean by a random normal-distributed amount with zero

mean and a standard deviation of 0.3 d-prime units unless

otherwise stated. Most of the simulated experiments allowed

C¼ 7 response alternatives with four difference grades: “no

difference,” “slightly better,” “better,” and “much better.”

1. Illustrative example

Two groups of N¼ 20 “listeners” were drawn at ran-

dom, one group from each of two separate populations. In

one group, the simulated decisions were generated by the

Thurstone model, and in the other group the BTL model was

used to generate the responses.

The simulation was designed to resemble a realistic

scenario for a paired-comparison experiment. Subjects in the

Thurstone population were assigned quality parameters l for

three hearing aids with a population mean of (0, �0.5, 1.0).

Because of the different scales of the Thurstone and the BTL

models, as defined in Eqs. (2) and (3), the corresponding mean

in the BTL population was set as (0, �0.57, 1.15) BTL scale

units. The inter-individual standard deviation was 0.3 d-prime

units in the Thurstone population and 0.34 scale units in the

BTL population. These population parameters are equivalent

in the sense that they would generate the same probability dis-

tribution of responses in a forced-choice binary trial for both

populations. Responses were generated with C¼ 7 alternatives

with four difference grades, specified by fixed thresholds

s ¼ ð0:5; 1:5; 2:5Þ d-prime units in the Thurstone group. The

corresponding thresholds for the BTL-generated responses

were s � ð0:57; 1:78; 3:22Þ BTL scale units. These two sets

of thresholds are equivalent in the sense that they yield the

same probability distribution of responses in both groups for a

presented pair with zero quality difference.

2. Credibility vs experimental effort

In the planning of an evaluation experiment, one critical

question might be the following: Assuming that our new

device B is just slightly better than the reference, A, how

many test participants do we need to engage, and how com-

plex test procedure should we use, in order to show the

improvement with good statistical reliability? To answer such

questions, we simulated several group experiments comparing

two objects A and B with true population means lA¼ 0 and

lB 2 ð0;…; 1Þ d-prime units. The inter-individual standard

deviation was 0.3 d-prime units in the population. All simu-

lated responses were generated using the Thurstone model.

For each simulated data set, the posterior probability

(credibility) was estimated for the hypothesis that lB > lA

for a random individual in the population, using both the

Thurstone (Eq. 2) and the BTL (Eq. 3) analysis models. To

show the effects of group size and test procedure, one series

of experiments was done with groups of N¼ 20 “subjects,”

each performing K 2 f2; 4; 8g replicated judgments for each

pair. Another series was done with groups of N 2
f10; 20; 30g “subjects,” each performing K¼ 4 replicated

judgments for each pair. This second series was also designed

to reveal the potential errors caused by “lapse responses,” in

which the participants temporarily lose focus and just

respond at random, regardless of the presented sounds. Lapse

responses were generated with a probability of pl¼ 10%.

All experiments allowed C¼ 7 response alternatives

with four difference grades, specified by fixed response

FIG. 2. (Color online) Example results from the proposed analysis method,

estimated using the Thurstone analysis model [Eq. (2)]. Estimated medians

(	,
) and 90% symmetric credible intervals are shown by vertical lines for a

random individual in two simulated populations, one with responses gener-

ated by the Thurstone model, and one with the BTL model. Short horizontal

lines show credible intervals for the population means. True population

means and 90% ranges are shown by longer horizontal lines. Data were gen-

erated for N¼ 20 simulated “listeners” from each population, with K¼ 10

replicated judgments for each pair.
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thresholds s ¼ ð0:5; 1:5; 2:5Þ d-prime units. All experiments

were replicated with 100 random group simulations for each

test condition.

3. Number of response categories

An important experimental design issue, and one of our

main research questions, is whether subjects should be

required to make graded difference judgments or only give

binary responses. Therefore, we simulated a series of experi-

ments using forced-choice binary responses, i.e., C¼ 2 cate-

gories, forced-choice graded responses with three ordinal

difference magnitudes, i.e., C¼ 6 response categories, as

well as with three difference grades plus an “equal” grade,

i.e., a total of C¼ 7 alternatives.

All experiments compared two objects A and B with

true population means lA¼ 0 and lB 2 ð0;…; 1Þ d-prime

units and an inter-individual standard deviation of 0.3

d-prime units. All simulated responses were generated using

the Thurstone model and results were also estimated using

this analysis model [Eq. (2)]. The response thresholds were

s ¼ ð0; 1; 2Þ for the forced-choice trials with three grades

(C¼ 6) and s ¼ ð0:5; 1:5; 2:5Þ in the trials with C¼ 7

response categories. Each simulated group included N¼ 20

“subjects,” each performing K 2 f4; 8g replicated judgments

with zero lapse probability. The experiments were replicated

with 100 random groups for each test condition.

For all groups, we calculated the squared difference

between the estimated and the known true quality difference

between the objects for each individual. The squared devia-

tions were averaged across subjects and across the 100 group

simulations, and the square root of the result is shown in

Fig. 4 as a single root-mean-square (rms) error measure for

each test condition.

B. Real evaluation of hearing aids

The subjective preference for two hearing-aid programs,

called A and B, was evaluated with paired comparisons by

N¼ 10 experienced hearing-aid users (Smeds et al., 2019).

The two programs were compared in the laboratory using lis-

tening situations guided by the Common Sound Scenarios

(CoSS), selected to represent typical listening situations in

everyday life (Wolters et al., 2016). The listening situations

were grouped into three main test conditions differing

mainly in the subject’s intention: (1) three samples of

“Speech communication” (communication between the test

person and one or two test leaders with and without cafeteria

background noise), (2) one sample of “Focused listening”

(watching and listening to a Youtube clip), and (3) one

sample of “Other” condition (monitoring surroundings while

performing vacuum cleaning). The set of five listening situa-

tions was repeated twice during a test session. Response

categories were preference for “A,” “B,” or “Equal.”

FIG. 3. (Color online) Estimated credibility for the hypothesis that the quality difference between two objects is positive for a random individual in the popula-

tion, plotted vs the true mean difference. The credibility was estimated using the Thurstone [Eq. (2)] (	) and the BTL [Eq. (3)] (
) analysis models for each

simulated experiment with K pair presentations for each of N “subjects” in the test group. Each data point shows the average credibility across 100 group simu-

lations. The solid curve without symbols is the proportion of individuals with positive true difference in the population.

FIG. 4. (Color online) The rms deviation between the estimated and the true

individual quality difference between two objects, plotted vs the mean dif-

ference in the population. The posterior parameter distributions were esti-

mated using the Thurstone analysis model [Eq. (2)] for simulated

experiments with forced-choice binary (C¼ 2) and graded (C¼ 6) as well as

non-forced graded (C¼ 7) response categories, with K 2 f4; 8g pair presen-

tations for each of N¼ 20 “subjects” in each test group. Each data point

shows the average across 100 group simulations.
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IV. RESULTS

A. Simulation experiments

1. Illustrative example

Figure 2 shows that the Thurstone analysis model [Eq.

(2)] yields quality estimates very close to the true values,

regardless of whether the Thurstone or the BTL model was

used to generate the simulated paired-comparison responses.

The results from the BTL model are not shown because they

are very similar, except for the different scale unit. The esti-

mated joint credibility was 80% for the combined result

that lB < lA < lC for a random individual in the population.

The joint credibility measure includes the effect of multiple

hypothesis tests so no further correction is needed.

In Fig. 2, the estimated 90% credible intervals for the

population mean of objects B and C included the true value.

This would be expected to happen in 90% of all simulated

experiments. Among 100 complete simulations with N¼ 20

subjects, the true value was covered in 87% of the estimated

intervals with the Thurstone analysis model and 82% with

the BTL model. In other simulations with an inter-individual

standard deviation of 1 d-prime unit, the empirical coverage

with N¼ 5 subjects in each group was 87% with the

Thurstone analysis model and 88% with the BTL model.

With N¼ 20 subjects in each group, the empirical coverage

was 90% and 89%, respectively. These results are all consis-

tent with the nominal credibility of 90%.

2. Credibility versus experimental effort

The proposed analysis method can reveal quite small

quality differences with high statistical credibility. The results

in Fig. 3(A) show that a quality difference of 1 d-prime unit

was indicated with credibility about 90% for a random individ-

ual in the population, when K¼ 4 paired-comparison

responses were given by each listener in a group of N¼ 20

participants. The credibility is naturally slightly reduced if the

test participants sometimes lose concentration and respond at

random, as shown in Fig. 3(B). The BTL analysis model [Eq.

(3)] consistently identified the quality difference with slightly

higher credibility than the Thurstone analysis model [Eq. (2)].

3. Number of response alternatives

Individual root-mean-square deviations plotted in Fig. 4

show that allowing graded difference magnitudes can improve

the precision dramatically compared to the common practice

of using just binary responses, especially when there is a large

difference between objects. The change from six to seven

response alternatives also tended to reduce the deviation.

The plotted rms deviations include the variance of indi-

vidual posterior parameter distributions, given the response

data, as well as the random variability in the responses, given

the true individual parameters. Results were very similar

with the BTL analysis model.

B. Real evaluation of hearing aids

Results from a real evaluation of two hearing-aid pro-

grams are shown in Fig. 5 for users comparing the programs

in three conditions with different listening intentions:

“Speech Communication,” “Focused listening,” and

“Other,” as defined in Sec. III B. For a random individual in

the population from which test participants were recruited,

program A is predicted to be better than program B in situa-

tions with Speech (credibility¼ 72%) and Focused listening

(credibility¼ 88%), whereas program B is predicted to be

better for the “Other” condition, which includes “Passive

listening” (credibility¼ 87%). The estimated joint credibility

was 99.8% for the result that the population mean preference

for program B was higher in situation “Other” than in the two

other situations. Using the average of ordinal ratings for B vs

A by each subject in the three situations, a Friedman test

indicated that the observed differences in the population
mean are statistically highly significant ðN ¼ 10; v2 � 12:88;
p � 0:16%Þ.

V. DISCUSSION

The presented new analysis method can estimate quality

parameters (1) for a random individual in the group of test

participants, (2) for a random individual in the population

from which test participants are recruited, and/or (3) for

the population mean. The validation with simulated paired-

comparison data indicated that the proposed method can esti-

mate quality parameters quite accurately. The estimated

credible intervals included the true value with approximately

the desired probability.

It is interesting to note that responses with graded differ-

ences improved result precision dramatically, especially

when the difference between tested objects was large.

Contrary to what might be expected, allowing tied (“Equal”)

responses did not cause any loss of precision, but rather

tended to improve the precision in the estimated results.

FIG. 5. (Color online) Preference for hearing-aid program A vs B, measured

with paired comparisons by N¼ 10 hearing-aid users in three main test con-

ditions. Medians (	, 
, �) and 90% symmetric credible intervals (vertical

lines) are estimated for a random individual in the population from which

the users were recruited. Short horizontal lines show 90% credible intervals

for the population means. Long horizontal lines at about 61 show the

median estimated threshold between responses “Equal” and “Different” in

either direction.
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The posterior joint distribution of all model parameters,

given the observed data, cannot be expressed in a closed

form, so approximations are inevitable. One method is to

draw random samples from the total joint distribution. This

“all-sampling” approximation becomes asymptotically exact

in the limit with infinitely many samples. The variational

approximation, defined in Appendix B, separates the distri-

bution of population parameters from that of individual
model parameters. The main advantage with this approach is

that a closed-form parametric distribution can be derived for

the population parameters, while a sampling representation

is used only for the individual parameters. This makes it

easy to algebraically integrate out some parameters to derive

the predictive population distributions, which are the main

goals of the estimation, as defined in Sec. II C 5 and

Appendix C. The “all-sampling” approach would have to

implement the integration by an additional sampling step.

A known potential weakness in the proposed analysis

model might be the prior assumption that model parameters

are mutually uncorrelated in the population. We believe this

choice of prior is defensible, because by using fewer popula-

tion parameters the analysis model can handle experimental

data sets including rather few participants, as discussed in a

footnote1 to App. A. The Bayesian analysis results include

predictive error measures (credible intervals) for the given

amount of data. The simulations indicated that those error

measures were reasonably accurate. An extension allowing

correlated population parameters is considered for a future

version of the model.

As noted in Sec. II B, the present analysis method

assumes a unidimensional decision space. It may be possible

to extend the analysis of graded ordinal responses using

some form of multidimensional scaling, but we must leave

this for future research.

The proposed analysis method has been implemented as

a python package PairedCompCalc, freely available at

the Python Package Index. The implementation is more gen-

eral than exemplified in this paper: the package can handle

several objects, listener groups, test conditions, and percep-

tual attributes in a single analysis. The code package also

includes simulation functions allowing the user to validate

the performance of the method and to plan a practical experi-

ment. Since the model illustrated in Fig. 1 can also be formu-

lated in an ordinal-regression framework, the analysis might

also be implemented using a general-purpose code package

for regression (B€urkner and Vuorre, 2019).

VI. CONCLUSION

A new Bayesian parametric analysis method for paired-

comparison data was presented. The method was evaluated

with simulated experimental data and exemplified using data

from a real experiment. We conclude the following answers

to our main research questions:

(1) The Thurstone and BTL models gave similar results

close to the true values. The estimated credibility of

quality differences was slightly higher with the BTL

model.

(2) Allowing graded ordinal responses in the experimental

procedure improved the precision dramatically, com-

pared to using only forced-choice binary responses,

especially when the real difference was large.

(3) Allowing tied (“Equal”) responses tended to improve

precision.

(4) When applied to real evaluation data, the analysis

revealed clinically interesting results with high statistical

credibility for a random individual in the population,

although the amount of test data was limited.
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APPENDIX A: PRIOR DISTRIBUTIONS

The prior distribution of individual model parameters in

the population is assigned a conditional multivariate

Gaussian density with independent1 elements

pðUnjV;KÞ ¼
YD
d¼1

ffiffiffiffiffiffi
kd

2p

r
eð�1=2ÞðUnd�VdÞ2kd ; (A1)

given the population mean V ¼ ð…;Vd;…Þ and precision

(inverse variance) matrix K ¼ diag½…; kd;…�. A conven-

tional Gaussian-gamma prior is defined for the population

parameters as

pðV;KÞ ¼
YD
d¼1

pðVdjkdÞpðkdÞ; (A2)

pðVdjkdÞ ¼
ffiffiffiffiffiffiffiffiffi
b0kd

2p

r
eð�1=2ÞðVd�m0dÞ

2b0kd ; (A3)

pðkdÞ ¼
b0d

a0

Cða0Þ k
a0�1
d e�b0dkd : (A4)

Here, CðzÞ ¼
Ð1

0
xz�1e�x dx is the gamma function. In the

absence of prior information, we assign all m0d ¼ 0. The

Jeffreys prior for the mean and precision of a Gaussian dis-

tribution would suggest b0 ! 0; a0 ! 0; b0d ! 0. However,

to avoid computational indeterminacy in case of extreme

response patterns, we must use a weakly informative prior.

The effective weight of the prior, relative to the weight

of one real test subject, is assigned as b0 ¼ 0:2. We choose

a0 ¼ b0=2 and b0d ¼ r2
d=2, with rd¼ 1 for all d. This means

that individual deviations from the population mean have a

typical prior scale rd.

APPENDIX B: VARIATIONAL LEARNING

We use variational inference (VI) (Bishop, 2006, Chap. 10)

to learn a good approximation qðU;V;KÞ � pðU;V;KjRÞ to
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the true posterior distribution of all individual models, U, and

all population parameters, given all observed data R. The VI

procedure maximizes a lower bound

LðqÞ ¼ ln
pðR;U;V;KÞ

qðU;V;KÞ

	 

q

� ln pðRÞ; (B1)

to the data log-likelihood and minimizes the Kullback-

Leibler divergence between the approximate and exact pos-

terior model distributions. Here, the symbol h�iq means the

expectation calculated using the current estimate of q( ) in

each learning step. The procedure is guaranteed to converge.

In this application, it is sufficient to enforce a partial factori-

zation between the distributions of individual and population

models as

qðU;V;KÞ ¼ qðUÞqðV;KÞ: (B2)

The total log-likelihood of all observed data and all model

parameters is

ln pðR;U;V;KÞ ¼ const: þ
XN�1

n¼0

XPn�1

p¼0

LðRnpjUnÞ

þ
XN�1

n¼0

XD

d¼1

1

2
ln kd �

1

2
ðUnd � VdÞ2kd

þ
XD

d¼1

1

2
ln b0kd �

b0

2
ðVd � m0dÞ

2kd

þ
XD

d¼1

ða0 � 1Þ ln kd � b0dkd; (B3)

where the likelihood function L( ) was defined in Eq. (4).

Using the standard VI solution for any factorized approxima-

tion (Bishop, 2006, Chap. 10), we find

ln qðV;KÞ ¼ h ln pðR;U;V;KÞiqðUÞ ¼ const:

þ
XD

d¼1

1

2
ln kd �

1

2
ðN þ b0Þ|fflfflfflfflffl{zfflfflfflfflffl}

b

V2
dkd

þ
XD

d¼1

Vdkd b0m0d þ
XN�1

n¼0

hUndi
 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bmd

þ
XD

d¼1

� b0

2
m0d

2kd �
1

2

XN�1

n¼0

hU2
ndikd

þ
XD

d¼1

ðN=2þ a0 � 1Þ ln kd � b0dkd: (B4)

This is the logarithm of a new Gaussian-gamma density with

independent elements for each d, like Eq. (A2). The condi-

tional Gaussian part is

qðVdjkdÞ ¼
ffiffiffiffiffiffiffiffi
bkd

2p

r
eð�b=2ÞðVd�mdÞ2kd ; (B5)

with updated parameters b ¼ b0 þ N and

bmd ¼ b0m0d þ
XN�1

n¼0

hUndi: (B6)

The remaining gamma density for the precision is

qðkdÞ / ka�1
d e�bdkd ; (B7)

with updated parameters a ¼ a0 þ N=2 and

bd ¼ b0d þ
b0

2
ðm0d � mdÞ2 þ

1

2

XN�1

n¼0

hðUnd � mdÞ2i: (B8)

As Eq. (B3) is a sum of terms involving each Un, the varia-

tional qðUÞ ¼
Q

nqðUnÞ is naturally factorized without any

further approximation, with

ln qðUnÞ ¼ const: þ
XPn�1

p¼0

LðRnpjUnÞ

� 1

2

XD

d¼1

ðUnd � mdÞ2hkdi: (B9)

Here, the last sum represents the hierarchical influence of the

current population model on the individual models. There is

no closed form for qðUnÞ, but the density can be effectively

represented by a large set of equally probable sample vectors,

uns; s ¼ 0;…; ns � 1, drawn from the distribution by

Hamiltonian sampling (Neal, 2011). The Hamiltonian sampler

uses only the log-likelihood function [Eq. (B9)] and its gradi-

ent. For the results presented in this paper, ns¼ 1000 vectors

were sampled from each qðUnÞ. The expectation of any

function of Un is approximated by the average across sam-

ples. Thus, hUni� ð1=nsÞ
P

suns, and hðUnd�mdÞ2i � ð1=nsÞP
sðunsd�mdÞ2.

To monitor the progress of VI learning, we calculate the

lower bound LðqÞ in Eq. (B1) most conveniently as

LðqÞ ¼ h ln pðRjUÞiq þ h ln pðUjV;KÞiq

�h ln qðUÞiq � ln
qðV;KÞ
pðV;KÞ

	 

q

: (B10)

The first two terms are calculated during the sampling opera-

tion using Eq. (B9). The third term is the sum of entropy for

each Un, which is calculated from the samples using a nearest-

neighbour (“Kozachenko-Leonenko”) estimator (Singh and

Poczos, 2016). The last term subtracts the Kullback-Leibler

divergence KLðqjjpÞ.

APPENDIX C: PREDICTIVE RESULTS

The learned individual and population models are used

to calculate three predictive distributions:

(1) The predictive distribution for a random individual drawn

from the group of participants is the mixture density

qðUNÞ ¼
1

N

XN�1

n¼0

qðUnÞ; (C1)

represented by the joined sets of samples of all qðUnÞ.
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(2) The predictive distribution for the dth parameter of a

random unknown individual in the population from

which the test group was recruited is the marginal den-

sity, integrated over all posterior parameters

pðUNdÞ ¼
ð

pðUNdjVd; kdÞqðVdjkdÞqðkdÞ dVd dkd

/ 1þ ðUNd � mdÞ2b
2bdðbþ 1Þ

 !�ð2aþ1Þ=2

; (C2)

using the conditional Gaussian pðUNdjVd; kdÞ in Eq.

(A1).

(3) The predictive distribution of the population mean
(equal to the median) is the marginal density

qðVdÞ ¼
ð

qðVdjkdÞqðkdÞ dkd

/ 1þ ðVd � mdÞ2b
2bd

 !�ð2aþ1Þ=2

: (C3)

The distributions in Eqs. (C2) and (C3) are both univariate

Student-t distributions with location md and degrees-of-free-

dom �¼ 2a. The Student-t scale parameter isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bdðbþ 1Þ=ab

p
in Eq. (C2) and

ffiffiffiffiffiffiffiffiffiffiffiffi
bd=ab

p
in Eq. (C3).

1Another possibility is to allow a full covariance matrix in (A1) and a

Gaussian-Wishart population prior in (A2). However, this would require

D(D þ 1)/2 instead of D free precision parameters and a correspondingly

larger N / D2 to yield reliable estimates. A Wishart prior would require N
> D – 1 participants to allow any proper population predictions at all,

while the diagonal covariance only requires N > 2.
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