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A number of measures were evaluated with regard to their ability to predict the speech-

recognition benefit of single-channel noise reduction (NR) processing. Three NR algorithms and a

reference condition were used in the evaluation. Twenty listeners with impaired hearing and ten

listeners with normal hearing participated in a blinded laboratory study. An adaptive speech test

was used. The speech test produces results in terms of signal-to-noise ratios that correspond to

equal speech recognition performance (in this case 80% correct) with and without the NR algo-

rithms. This facilitates a direct comparison between predicted and experimentally measured

effects of noise reduction algorithms on speech recognition. The experimental results were used

to evaluate nine different predictive measures, one in two variants. The best predictions were

found with the Coherence Speech Intelligibility Index (CSII) [Kates and Arehart (2005),

J. Acoust. Soc. Am. 117(4), 2224–2237]. In general, measures using correlation between the clean

speech and the processed noisy speech, as well as other measures that are based on short-time

analysis of speech and noise, seemed most promising VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4892766]
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I. INTRODUCTION

Most hearing impairments reduce the ability to under-

stand speech in background noise (e.g., Moore, 1996).

Hearing-aid users often need to cope with noisy listening sit-

uations (Wagener et al., 2008), and difficulties hearing in

these situations constitute a major source of dissatisfaction

(Kochkin, 2010). Therefore manufacturers of hearing devi-

ces are trying to find improved noise-reduction (NR) meth-

ods, which need to be evaluated for their effects on speech

recognition.

The purpose of the present study was to evaluate a num-

ber of measures in terms of their capacity to predict the

effect that NR algorithms have on listeners’ speech recogni-

tion ability in noise. The work reported here was part of a

larger study, where both speech intelligibility and sound

quality of NR processed speech were evaluated. The sound-

quality work has been reported elsewhere (Smeds et al.,
2010b).

A number of strategies can be used in hearing instru-

ments to improve the signal-to-noise ratio (SNR). The pres-

ent study is concerned with effects of so-called “single-

channel” NR, commonly used in modern hearing aids, by

itself or in combination with microphone arrays for spatial

beam-forming. These single-channel NR algorithms can be

designed based on various rationales. Previous studies have

shown that hearing-aid NR algorithms function in very dif-

ferent ways (Chung, 2004; Hoetink et al., 2009; Bentler,

2006; Smeds et al., 2010a; Brons et al., 2013).

Although improved speech recognition in noise is an

appropriate NR design goal, it has been difficult to find evi-

dence for NR algorithms that can actually achieve this goal

(Bentler et al., 2008; Luts et al., 2010; Hu and Loizou,

2007). One exception was found in a study where Peeters

et al. (2009) showed improved speech recognition for listen-

ers with impaired hearing.

A number of studies show that hearing-aid users prefer

to use NR in noisy situations (e.g., Boymans and Dreschler,

2000; Luts et al., 2010) and that NR algorithms can improve

listening comfort (Bentler et al., 2008). Even when an NR

algorithm is designed mainly to improve listening comfort, it

is important to evaluate its effects on speech recognition. At

least one study has shown that listeners with impaired hear-

ing subjectively judged speech clarity to be better with NR

even if measured speech recognition actually decreased with

NR processing (Dahlquist et al., 2005).

The effects of NR algorithms are usually evaluated in

listening tests with participants with or without hearing

impairment (e.g., Bentler et al., 2008; Luts et al., 2010; Hu

and Loizou, 2007). It would be of great value if some predic-

tive measure could be used to indicate the effect of various

NR algorithms prior to laboratory or field testing with

listeners.

Methods to predict speech intelligibility, using measures

of speech and noise characteristics, have been important

design tools ever since the early development of telephone

communications (Fletcher, 1929; Fletcher and Galt, 1950).

In the telephone-system application, the most important

forms of transmission distortion were stationary noise and a

non-uniform linear frequency response with a very limited

frequency bandwidth. The Articulation Index, later devel-

oped into the Speech Intelligibility Index (SII) (ANSI, 1997)
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turned out to be a useful predictive measure. More recently,

the SII has also been used for theoretical prescription of gain

characteristics of non-linear hearing instruments (Byrne

et al., 2001; Keidser et al., 2011). Extensions of the SII and

several new predictive measures have been proposed for use

in situations with highly modulated noise and with advanced

forms of non-linear signal processing.

Some approaches are related to the Speech

Transmission Index (STI), originally proposed by Houtgast

and Steeneken (1973) and later standardized (IEC, 2011).

The STI is focused on the degree with which the temporal

modulation characteristics of the clean speech are preserved

in the presented noisy speech. The STI was designed to

account better than the SII for the effects of modulated noise,

reverberation, and some forms of non-linear signal transmis-

sion like peak-clipping and automatic gain control

(Steeneken and Houtgast, 1980).

When a predictive measure of speech recognition is

used for preliminary evaluations of a new or modified NR

algorithm for hearing aids, the most important concern is

whether the measure can predict small changes in the right
direction. If the predictive measure indicates an improve-

ment with a new NR algorithm, but tests with listeners show

no improvement, or even a reduction in speech-recognition

performance, then obviously the preliminary predictive eval-

uation might guide algorithm development in the wrong

direction.

Several previous studies have evaluated the ability of

predictive measures to estimate listeners’ performance with

NR processed speech (e.g., Ma et al., 2009; Taal et al.,
2011b; Xia et al., 2012). These studies present deviations

and correlations between predicted and measured intelligi-

bility scores across a wide range of noise types and SNRs

and processing algorithms. However, as the overall predic-

tion errors are pooled across NR algorithms, it is difficult to

see if the predictive measures can correctly reveal small dif-

ferences between NR algorithms. In fact, in some cases the

presented scatter plots (Taal et al., 2011b; Xia et al., 2012)

suggest that some predictive measures may give systemati-

cally different errors for different NR algorithms.

In the studies mentioned in the preceding text, only

normal-hearing listeners participated. Predictive measures

intended to be used to evaluate NR algorithms in hearing

aids need to be evaluated using participants with impaired

hearing.

The present evaluation included listeners with impaired

and normal hearing. The study was designed to test various

predictive measures in listening conditions with speech-to-

noise ratios individually adjusted to give equal speech-

recognition performance across different NR methods. This

approach is sensitive in revealing the ability of the predictive

measure to correctly indicate also small differences between

test conditions.

II. LABORATORY TEST

A. Method

Twenty listeners with sensorineural hearing loss and ten

listeners with normal hearing participated in a laboratory test

where speech recognition was tested with sound files that

were either unprocessed or pre-processed using three

software-based NR algorithms. For the participants with

impaired hearing, linear hearing aids were individually fitted

to compensate for each participant’s hearing loss. The test

results were SNRs corresponding to equal speech recogni-

tion performance for all test conditions (unprocessed and

three NR algorithms).

1. Participants

Twenty listeners with symmetrical, sensorineural, mild-

to-moderate hearing loss (Fig. 1, left panel), 11 women and

9 men, were recruited from a research database at ORCA

Europe. Symmetrical hearing was defined as a maximum

threshold difference between the ears of 15 dB at a maxi-

mum of three adjacent audiometric test frequencies (includ-

ing 1.5, 3, and 6 kHz). In the group, two participants had a

threshold difference of 15 dB at two adjacent frequencies

and for more than half of the participants the threshold dif-

ferences were less than 15 dB at all test frequencies. The par-

ticipants’ ages ranged from 62 to 82 yr (mean, 72 yr), and

they were all fluent in Swedish.

The participants were all experienced users of binaural

hearing aids. All but one participant had more than 1 yr of

hearing-aid experience (median, 3.5 yr). The person with

shorter experience had used the hearing aids regularly for

FIG. 1. Median thresholds (crosses)

and range of hearing thresholds (bars)

for 20 listeners (40 ears) with impaired

hearing (left panel) and 10 listeners

(20 ears) with normal hearing (right

panel).
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more than 6 months. The participants were not paid for their

participation, but they received a small gift at the last visit.

Later ten listeners with normal hearing (Fig. 1, right

panel), six women and four men, were recruited by advertis-

ing at the Stockholm University. Their ages ranged from 19

to 28 yr (mean, 23 yr), and they were all fluent in Swedish.

They were paid for their participation.

The study design agreed with the Declaration of

Helsinki in which ethical principles for human medical

experiments are outlined. All participants were given written

and verbal information about the study, and they signed an

informed consent form. Participation was voluntary and

could be terminated if a person would decide to do so. For

the participants with impaired hearing, commonly available

CE marked hearing aids were fitted according to a conserva-

tive clinical practice.

2. Hearing aids

High-quality hearing aids (Inteo 9, Widex A/S), linearly

programmed according to the NAL-R prescription (Byrne

and Dillon, 1986), but with gain reduced by 6 dB across the

frequency range, were fitted bilaterally to the participants

with hearing impairment. The gain reduction was motivated

by binaural loudness summation, by the fact that the speech

presentation levels used in this study were slightly higher

than normal, and by the fact that a number of studies have

indicated that NAL-R prescribes more gain than listeners

prefer (e.g., Humes et al., 2002; Leijon et al., 1990). The

hearing aids were used during the laboratory experiment

without any prior gain acclimatization.

All advanced signal processing in the hearing aids was

switched off. The hearing aids were used with tight ear

molds. The hearing-aid fittings were verified using real-ear

insertion gain measurements (REM, INTERACOUSTICS

EQUINOX SUITE 2.03) and the linearity of the pro-

grammed hearing aids was confirmed using coupler-gain

measurements (INTERACOUSTICS EQUINOX SUITE

2.03) at a wide range of input levels.

3. Noise reduction algorithms

Three software-implemented NR algorithms were used.

All methods work by fast-varying adaptive adjustments of

the gain frequency response. The short-time spectra of signal

and noise are estimated and the algorithms reduce the gain

in time-frequency bins where the SNR is low. The algo-

rithms differ in their SNR estimation methods and in the

speed and range of gain adjustments.

The purpose of this study was not to evaluate any partic-

ular NR algorithm. The algorithms were selected primarily

because they produced clearly different perceptual qualities

evaluated by normal-hearing listeners in an informal listen-

ing test.

Two of the algorithms are described in the textbook by

Loizou (2007), and the MATLAB code on the CD attached

with the textbook was used. The method called “WEDM”

uses a Bayesian noise estimator based on the weighted

Euclidean distortion measure (function stsa_weuclid.m). The

method called “Wiener” applies conventional Wiener

filtering based on a priori SNR estimation (function

wiener_as.m). The third algorithm, perceptually tuned spec-

tral subtraction algorithm with low-pass filtered spectral fil-

ter coefficients (PSSLP), was developed and evaluated for

hearing-aid use (Luts et al., 2010). A fourth test condition,

“unprocessed,” with no NR processing, was used for

comparison.

To illustrate the long-term effects of the NR processing

on speech and noise levels, these levels were measured for

an example condition with 0 dB SNR at the input to the algo-

rithms. Compared with the speech and noise levels for the

unprocessed condition (0.0, 0.0) dB, all algorithms reduced

both speech and noise levels to (�2.0, �2.8) dB with

PSSLP, to (�3.1, �7.2) dB with WEDM, and to (�0.9,

�3.2) dB with the Wiener processing. Thus WEDM was the

most aggressive algorithm, reducing the long-term speech

level by 3.1 dB and increasing the long-term SNR by 4.1 dB,

but it also resulted in quite audible distortion.

These changes of the long-term speech and noise levels

are somewhat different at other SNRs. However, these

changes were considered as a built-in consequence of the

NR algorithms and were included in all calculations of pre-

dicted intelligibility measures.

4. Word recognition test

Speech Recognition Thresholds (SRTs) were measured.

In this study, the term SRT denotes the SNR at which a par-

ticipant reaches a pre-defined performance criterion, here

80% correct. A Swedish adaptive sentence test using five-

word sentences with a fixed syntax (“matrix text”) spoken by

a female talker was used (Hagerman, 1982). Artificial babble

noise was derived by superimposing the International

Speech Test Signal (ISTS) (Holube et al., 2010) eight times

with randomly varying starting points and the levels pair-

wise decreased by 2, 4, and 6 dB relative to the first pair.

The babble noise was then filtered to the long-term average

spectrum of the speech sentences. The sentences were mixed

with the artificial babble in SNRs from �12 to þ15 dB with

a step size of 1 dB. These mixed speech and babble files

were then processed by the three NR algorithms.

The sound files were presented at a fixed speech level of

70.5 dB(A) re 20 lPa for the unprocessed version. The over-

all levels of the processed speech were slightly lower as

shown in Sec. II A 3. The reported results are the nominal

SNRs used, i.e., the SNR at the input to the NR algorithms.

The adaptive speech testing started with a training list

(10 sentences), which was used to familiarize the partici-

pants with the speech material. The adaptive procedure was

designed so that the participants would be close to 80% cor-

rectly identified words at the end of the training list. During

the actual testing, the SNR was kept un-changed if the par-

ticipant recognized four of five words correctly. The SNR

was decreased by 1 dB if the participant recognized five

words. The SNR was increased by 1 dB if the participant rec-

ognized two or three words and by 2 dB if the participant

recognized no or one word. The test was terminated when

one of the following two conditions was fulfilled: (1) After

seven reversals in the up-down procedure (and the result was
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then calculated as the mean of the SNRs at the last four

reversals) or (2) if the participant achieved 80% correctly

identified words for seven consecutive sentences (in which

case this SNR was used as the result). All participants

reached one of these stop criteria within three test lists (30

sentences). Data were collected twice at two visits.

5. Instrumentation and calibration

The speech and noise sound files for the adaptive speech

test were stored on a PC and played back with an external

24-bit RME Fireface 800 sound card and power amplifier

Rotel type RMB-1075. The listening test was performed in a

sound-proof booth (3.2 m� 3.1 m� 2.0 m). The participants

listened binaurally under sound-field conditions using one

loudspeaker (Jamo D400) placed 1 m in front of the listener.

The measured transfer function from the digital signal to the

listening position was included in all calculations of predic-

tive measures.

The frequency response of the complete playback sys-

tem, from the stored audio files, via D-A converter, amplifier

and loudspeaker, to the listening position in the test room,

was measured by presenting a sound file with white

Gaussian noise. The sound at the listening position was

recorded by a free-field microphone (Br€uel and Kjær 4189)

connected to a pre-amplifier (Br€uel and Kjær ZC 0032) and

the AD converter of a RME Fireface 800 sound card, and the

resulting signal was stored as an audio file.

The presented and recorded signals were analyzed in

1/3-octave bands ranging from 100 Hz to 10 kHz. The room

frequency response was estimated as the difference (in dB)

between the mean power levels in each band of the recorded

and presented signals.

For use in the predictive measures, the individual

hearing-aid insertion-gain frequency responses for listeners

with hearing impairment were analyzed in a similar way and

were represented with the same frequency resolution as the

room transfer function. The insertion-gain responses were

smoothed by power averaging in 1/3-octave frequency

bands.

For the absolute sound pressure level calibration (per-

formed daily), a special calibration signal (stationary

Gaussian noise with approximately speech-shaped spectrum)

was presented in the same way as the test sounds. The

A-weighted sound pressure level was measured at the listen-

ing position using a Rion NL-32 sound-level meter with

microphone NH-21. The measured calibration level was

72 dB(A) re 20 lPa.

All presented sound files were stored digitally with fixed

amplitude in relation to the calibration signal. The playback

equipment was left in the same state as during the calibration

measurements. As shown in Sec. II A 3, the NR algorithms

modified the overall amplitude of the digital speech and

noise signals. These level effects were included in the subse-

quent calculations.

6. Statistical analysis

The individual SNR values for 80% word recognition

(SRT) were averaged across the two test sessions.

Friedman’s two-way analysis of variance by ranks test

(MATLAB Statistical Toolbox, v. 8.2) was then used to deter-

mine whether there were any statistically significant rank-

order differences (p< 0.05) across NR algorithms, for each

of the two groups of listeners.

The overall reliability of the speech test results was

quantified as follows: The mean squared test-retest SRT dif-

ference, d2, averaged across listeners and test conditions,

was used as a conservative estimate of the variance of the

test-retest difference. Because the variance of the sum of two

independent measurements is equal to the variance of their

difference, the variance of the mean of the two test-retest

results is estimated as d2/4, and the corresponding standard

deviation is d/2. The standard error of group results for N lis-

teners is then estimated as d=2
ffiffiffiffi
N
p

.

B. Results

The results from the adaptive speech test showed that

the participants with impaired hearing (Fig. 2, left panel)

achieved 80% correct word recognition at substantially

higher SNRs and with greater inter-individual variation than

the participants with normal hearing (Fig. 2, right panel).

Friedman’s two-way analysis of variance by ranks showed

that there were significant (p< 0.05) differences among the

test conditions (three NR algorithms and one unprocessed)

within both groups of participants.

The root-mean-square test-retest SRT difference, aver-

aged across listeners and test conditions, was d¼ 2.71 dB-

units for the group with impaired hearing and 1.76 dB-units

for the normal-hearing listeners. As described in Sec. II A 6,

the standard error of a group result in one test condition is

estimated as d=2
ffiffiffiffi
N
p

, i.e., about 0.30 dB-units for N¼ 20 lis-

teners with impaired hearing and about 0.28 dB-units for the

N¼ 10 listeners with normal hearing.

The test-retest results indicate that the procedure could

reveal quite small systematic group differences between test

conditions. This is confirmed by the results of the Friedman

test, which also accounts for the random individual

variations.

FIG. 2. Speech recognition thresholds (SRT) for 20 listeners with impaired

hearing (HI, left panel) and 10 listeners with normal hearing (NH, right

panel) for three NR algorithms (PSSLP, WEDM, Wiener) and one reference

condition with unprocessed signals (Unproc). The SRT is defined as the

SNR required for 80% correct responses in the adaptive speech test. Each

individual result is the average across two test sessions. Each box shows

inter-quartile values across all listeners, and the median is represented by

the line in the box. Outliers (þ) are defined as values outside 1.5 times the

box length, and the whiskers extend to the highest and lowest values when

outliers are excluded.
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III. PREDICTIVE MEASURES

Nine different predictive measures were applied (with

two variants of one measure). The measures are described in

Sec. III A 1 to Sec. III A 9.

All measures apply an initial audio frequency analysis

meant to mimic the frequency analysis of the inner ear. The

first four methods (SII, ESII, STSII, and Glimpses) use the

processed speech and noise signals to calculate a weighted

average of the audibility of processed speech across time

and frequency.

The other measures analyze other characteristics of the

output signal from each audio channel. Two methods

(fwSNRseg-a, -b) calculate speech-to-distortion ratios using

the processed noisy speech and the corresponding clean

speech. Two methods (STOI and CSII) use measures of

correlation between the processed noisy speech and the

corresponding clean speech. The last two methods (sEPSM

and mr-sEPSM) calculate SNRs in the modulation frequency

domain, using the envelopes of the processed noisy speech

and the processed noise.

A. Method

Speech and noise files with input SNRs ranging from

�12 to þ 15 dB in 1-dB steps were prepared for each test

condition (three NR algorithms and one unprocessed).

Some of the predictive measures need separate speech

and noise signals in the calculation. As the WEDM and

Wiener algorithms processed the noisy speech signals, the

processed output signal was separated into speech and noise

files using the phase-inversion method of Hagerman and

Olofsson (2004). The PSSLP algorithm was implemented

with so-called “shadow filtering,” i.e., the code processed

separate input speech and noise signals, but the processing

of both signals was determined by the internally mixed

speech plus noise. Therefore no extra separation step was

necessary for this NR algorithm.

In all calculations, the power spectra for the speech and

noise signals were adjusted to include the overall level cali-

bration and the room transfer function, measured as

described in Sec. II A 5. Individual hearing threshold loss

and hearing-aid insertion gain values were used for each ear.

For the listeners with normal hearing, the hearing loss and

the insertion gain values were set to 0 dB. In this way, all

calculations of predictive measures accounted for the abso-

lute sound pressure level and spectrum presented at each ear

of each listener.

The predictive measure was calculated separately for

each ear, and the highest of the two predicted values was

used when displaying the data and in the statistical analy-

ses. The participants had symmetrical hearing, and therefore

the differences between predictions for the two ears were

small.

Some predictive measures were not designed to take the

absolute presentation level and the hearing thresholds into

account. To apply these methods for listeners with impaired

hearing, the absolute levels and spectra of the presented

sounds were related to the absolute hearing thresholds as

described later for each measure.

1. SII

The Speech Intelligibility Index (SII) quantifies audibil-

ity of speech based on long-term estimates of the speech and

noise spectrum levels (spectral power density per hertz in

decibels) and the hearing threshold levels (ANSI, 1997).

Audibility was determined from the long-term speech and

noise spectrum levels as specified in the standard, using

critical-band frequency resolution and the band importance

function for average speech (ANSI, 1997, Table I).

The threshold-equivalent reference spectrum levels for

normal hearing were taken from the critical-band version of

the SII standard (ANSI, 1997, Table I). For the listeners with

impaired hearing, the hearing threshold loss in decibel hear-

ing level (HL) was interpolated to the critical-band center

frequencies and added to the normal reference spectrum lev-

els. A non-standard desensitization factor, proposed by

Pavlovic et al. (1986), was applied to incorporate supra-

threshold deficits associated with sensorineural hearing loss.

2. ESII

Rhebergen et al. (2006) and Rhebergen et al. (2010) pre-

sented an extended Speech Intelligibility Index (ESII) method

with the purpose of predicting speech recognition in fluctuat-

ing noise. This extension to the SII has shown promising

results for various types of fluctuating noise. The ESII is deter-

mined from the long-time average speech spectrum together

with effective short-time noise spectra, calculated with critical-

band frequency resolution. The effective noise spectra are cal-

culated to include the effects of forward masking.

A sequence of short-time SII values are estimated with

fine temporal resolution, and these values are averaged to

give the final ESII value. The short-time SII values were cal-

culated by the critical-band variant of the standard method,

using the band importance function for average speech

(ANSI, 1997, Table I). The calculations used MATLAB code

kindly made available by Koenrad Rhebergen in Oct. 2013.

The individual hearing thresholds were included in the

same way as for the standard SII (Sec. III A 1). No desensiti-

zation factor was applied.

3. STSII

As part of the current study, a simple short-time SII ver-

sion (STSII) was implemented. This method calculates an

SII value using the short-time speech and noise spectra esti-

mated in Hamming-weighted time windows of 50 ms with

50% overlap, i.e., 25 ms time resolution. The SII calculation

for each time window used the same standard method as in

Sec. III A 1. No effects of forward masking were included.

The final result was an average of all STSII values. A similar

approach was proposed by Kates (1987).

The individual hearing thresholds were included in the

same way as for the standard SII (Sec. III A 1), including the

non-standard desensitization factor.

4. Glimpses

Cooke (2006) showed good correlation between a

“glimpses” measure and consonant recognition in babble
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noise with normal-hearing listeners. The glimpses measure

is the proportion of time-frequency bins where the speech

magnitude exceeds the noise magnitude by a predetermined

amount. The time-frequency representations are calculated

separately for the speech and the noise components in the

processed signal.

The spectral analysis was performed by time-domain fil-

tering in a complex Gammatone filterbank with 40 bands with

approximately normal auditory equivalent rectangular band-

widths (ERBs), covering the frequency range from 50 Hz to

7.5 kHz. The signal envelopes in each band were smoothed by

a first-order low-pass filter with 8-ms time constant and then

down-sampled to a time resolution of about 10 ms. This analy-

sis was done using MATLAB software kindly provided by

Martin Cooke in Feb. 2011. The final glimpses measure was

then calculated simply as the relative number of time-

frequency bins where the SNR was greater than 0 dB.

The original glimpses measure did not take any hearing-

threshold effects into account. To apply the method for lis-

teners with impaired hearing, the effective noise spectrum

levels were limited by a noise floor at the spectrum levels

representing the individual absolute hearing threshold. The

threshold-equivalent spectrum levels for normal hearing

were taken from the critical-band version of the SII standard

(ANSI, 1997, Table I), interpolated to the center frequencies

of the filters used in the calculation. For the listeners with

impaired hearing, the hearing threshold loss (in decibel HL)

was interpolated in the same way and added to the normal

reference spectrum levels.

5. fwSNRseg

In an evaluation of several predictive intelligibility

measures for noise-corrupted speech, processed with several

NR algorithms, frequency-weighted segmental signal-to-

noise ratio (fwSNRseg) approaches came out among the

most promising ones (Ma et al., 2009).

The fwSNRseg is a weighted average of speech-to-dis-

tortion ratios, in decibels, calculated from the ratio between

the time-frequency representations of the unprocessed clean

speech and the distortion. The distortion is calculated in

each time-frequency bin as the difference between the enve-

lopes of the clean speech and the processed noisy speech. As

opposed to the SII-based measures, this distortion measure

includes not only the noise but also envelope modifications

caused by the NR algorithm.

Ma et al. (2009) tried several methods to determine the

weights. One of these variants have been used here, and one

modification, based on a later suggestion by Loizou and Kim

(2011) has also been included

(a) Weight factors proportional to the clean speech time-

frequency magnitude, called “p¼ 1” by Ma et al.
(2009, Eq. 6).

(b) The same weight factors (“p¼ 1”) except that the

weights were doubled in all time-frequency bins where

the magnitude of the processed noisy speech was more

than 6 dB higher than the clean-speech magnitude.

This level region was called “Region III” by Loizou

and Kim (2011).

Loizou and Kim (2011) suggested that NR processing

should be constrained so that it does not produce output in

“Region III,” but they did not interpret this criterion as a pre-

dictive intelligibility measure. In the time-frequency bins in

“Region III,” the signal-to-distortion ratios (in decibels) are

always negative, so increasing the weights is equivalent to

applying a higher cost for any distortion in this region.

Several ways to modify the weights in (b) have been tested

in the current study of which the presented variant seemed to

be the most promising.

The present implementation calculated the time-frequency

signal representations by first segmenting the time-domain sig-

nals into 20-ms Hamming-windowed frames with 50% over-

lap, i.e., 10-ms time resolution. The short-time spectra were

calculated in 25 frequency bands with normal auditory ERBs

covering the frequency range from 50 Hz to 8 kHz.

The studies by Loizou and co-workers did not take any

hearing-threshold effects into account. To apply the methods

for listeners with impaired hearing, the spectrum levels of

the processed noisy speech were compared to the corre-

sponding spectrum levels representing the individual abso-

lute hearing threshold. The threshold-equivalent reference

spectrum levels for normal hearing were taken from the

critical-band version of the SII standard (ANSI, 1997,

Table I), interpolated to the frequencies used in the calcula-

tion. For the listeners with impaired hearing, the hearing

threshold loss (in decibel HL) was interpolated in the same

way and added to the normal reference spectrum levels. The

final weighted sum included only those time-frequency bins

where the processed noisy speech levels were higher than

the corresponding threshold levels.

6. STOI

Taal et al. (2011a,b) developed a short-time objective

intelligibility measure (STOI) of the correlation between

band envelope magnitudes of clean speech and processed

noisy speech. The method has shown good agreement with

speech recognition results obtained for normal-hearing lis-

teners tested with noisy speech processed by a number of

NR algorithms.

A short-time spectral analysis is performed by segment-

ing the input signals in Hamming-weighted blocks with

25.6 ms duration with 50% overlap, i.e., 12.8 ms time resolu-

tion. Short-time band power spectra are calculated for each

segment in 15 third-octave bands with center frequencies

from 150 Hz to 3.8 kHz. Using the sequence of envelope

magnitude values in each frequency band, the linear correla-

tion coefficient between clean speech and processed noisy

speech is calculated within overlapping time segments of

about 400 ms, after scaling to equalize the power of clean

and processed noisy speech and clipping to limit the signal-

to-distortion ratio. The correlation coefficients are then aver-

aged across time segments and frequency bands. All these

calculations were performed by MATLAB code kindly pro-

vided by Cees Taal in Dec. 2009, also available at http://

msp.ewi.tudelft.nl/content/software-and-data.

As the original STOI calculation does not take hearing

loss into account, the calculations were modified by adding
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the third-octave band power values of a threshold-equivalent

noise to the band power values of the processed noisy

speech, before calculating the correlation. The reference

spectrum levels of the threshold-equivalent noise for normal

hearing was taken from the SII standard (ANSI, 1997,

Table I), interpolated to the band center frequencies used in

the calculation, and adjusted to third-octave band levels. For

the listeners with impaired hearing, the hearing threshold

loss (in decibel HL) was interpolated in the same way and

added to the normal reference spectrum levels.

7. CSII

Kates and Arehart (2005) presented a three-level coher-

ence SII (CSII) based on the magnitude-squared coherence

function between the clean speech and the processed noisy

speech. This method has shown promising results for noisy

speech subjected to peak- and center-clipping distortion.

The coherence values are integrated within each auditory

frequency band represented by rounded-exponential fre-

quency responses with normal auditory frequency resolution.

The resulting signal-to-distortion ratios (SDR) in each audi-

tory filter band are used as audibility measures in the critical-

band version of the standard SII. The importance weighting

for “average speech” (ANSI, 1997, Table I) was used.

Before calculating the coherence measures and the SDR,

the signal segments are separated into three level regions based

on the clean-speech root-mean-square (RMS) values. The

high-level segments are those at or above the overall RMS

level. The mid-level segments are those between 0 and 10 dB

below the overall RMS level, and the low-level segments are

those between 10 and 30 dB below the overall RMS level.

The signals are segmented into 16-ms Hamming-win-

dowed frames with 50% overlap, i.e., 8-ms time resolution.

The results for the three level regions were weighted by factors

1.84 for the low-level segments, 9.99 for mid-level region, and

0.0 for the high level region, as Kates and Arehart (2005) found

these weight factors to be optimal. A MATLAB implementation

was kindly made available by Georg Stiefenhofer in 2010.

The hearing loss is accounted for by a threshold-

equivalent internal masking noise spectrum exactly as in

the standard SII procedure (Sec. III A1). No desensitization fac-

tor was applied.

8. sEPSM

Jørgensen and Dau (2011) proposed an intelligibility mea-

sure based on long-term SNRs in the modulation-frequency do-

main, called speech-based envelope power spectrum model

(sEPSM), and found good agreement with speech-recognition

results in stationary noise and reverberation and with a variant

of NR by spectral subtraction.

This method uses both the processed speech-plus-noise

and the processed noise-only signals as input. The signals

are first spectrally analyzed in a filter bank with 22 fourth-

order complex gammatone filters with 1/3-octave spacing,

covering the frequency range from 63 Hz to 8 kHz. The

envelopes of the output signals in each filter band are ana-

lyzed in a modulation filter bank with seven filters, one low-

pass filter with 1-Hz cutoff frequency and six overlapping

bandpass filters with center frequencies with octave spacing

from 2 to 64 Hz. The long-term power in each modulation

filter band, and each audio frequency channel, is calculated

in the frequency domain for the processed noisy speech and

for the processed noise only, and the ratio between these val-

ues is the SNR. The final overall modulation SNR is calcu-

lated by power summation across modulation frequencies

and audio frequency channels. All the calculations were

done based on a MATLAB implementation kindly made avail-

able by Søren Jørgensen in Feb. 2012.

To account for the individual hearing loss, the final sum-

mation includes only those audio channels where the long-

term third-octave band level of the processed noisy speech

exceeds the corresponding threshold-equivalent reference

levels for third-octave filtered noise in a diffuse sound field

(ISO, 2005). Compared to the method described in the origi-

nal article, this is a slight revision suggested by Jørgensen

(April 8, 2014, personal communication).

For the listeners with impaired hearing, the hearing

threshold loss (in decibel HL) was interpolated to the center

frequencies of the audio channels and added to the normal

reference threshold. The hearing thresholds and insertion

gain values were used only to determine which audio chan-

nels to include for each ear.

9. mr-sEPSM

Jørgensen et al. (2013) presented a refined version,

multi-resolution speech-based envelope power spectrum

model (mr-sEPSM), of the envelope modulation power spec-

trum model to better account for fluctuating noise, reverbera-

tion, and non-linear noise reduction. The new version is

similar to the previous sEPSM approach. However, now the

modulation filter bank has nine channels, one low-pass and

eight bandpass filters with octave-spaced center frequencies

from 2 to 256 Hz.

The main difference is that the output from the modula-

tion filters is now represented in the time domain. The fil-

tered envelope signals for the noisy speech and the noise in

each modulation band is segmented into non-overlapping

blocks. For the low-pass filter, the block duration is 1 s, and

for the band-pass filters, the durations are equal to the

inverse of the band-pass filter center frequencies. A modula-

tion SNR is calculated for each time segment, each modula-

tion band, and each audio channel.

The final modulation SNR is calculated by power summa-

tion across modulation frequencies, time segments, and audio

frequency channels, including only those audio channels where

the long-term level of the processed noisy speech exceeded the

hearing threshold. All these calculations were done using MATLAB

code kindly made available by Søren Jørgensen in Dec. 2012.

The hearing loss was accounted for in the same way as

for the sEPSM (Sec. III A 8).

B. Data presentation

1. Performance indicators

In the following, the data analysis necessary to compare

measured and predicted benefit of NR processing is
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described. The performance indicators were selected to

quantify the predicted and measured effects of NR algo-

rithms on the same decibel scale, such that the prediction

errors could be directly compared across different measures.

Meyer and Brand (2013) used a similar method to calculate

predicted SRTs.

The measured benefit Bna was quantified as the reduc-

tion in the speech recognition threshold (SRT, in dB) for the

nth listener using NR algorithm a,

Bna ¼ SRTnu � SRTna; (1)

where subscript u indicates the unprocessed condition and

subscript a processing with noise reduction algorithm a.

Thus a positive value of Bna indicates that the NR algorithm

improved the listener’s speech-recognition ability, yielding a

lower SRT with NR than without.

Each predictive measure was then used to estimate a

corresponding predicted benefit. The method for this estima-

tion is illustrated in Fig. 3 by an example using one predic-

tive measure (SII) for one listener with impaired hearing and

one of the NR algorithms (WEDM).

The upper panel of Fig. 3 shows that the measured NR

benefit was �1.9 dB. The “benefit” is negative as the SRT

was higher with NR (filled square) than without (filled

circle).

The lower panel shows how the SII is used to calculate

two corresponding predicted measures of NR benefit. For all

available speech and noise signals, the SII was calculated as

a function of SNR, for the unprocessed condition (dashed

line in the lower panel of Fig. 3) and for the WEDM

processed condition (solid line) for SNRs from �12 to

þ15 dB in 1-dB steps.

The first predicted benefit was determined by calculat-

ing an SII value using the measured SRT for the unprocessed

condition (filled circle in the lower panel of Fig. 3). A corre-

sponding SNR, at the same SII, was then determined for the

WEDM processed condition (unfilled square). In this exam-

ple, the calculated benefit was about þ2.3 dB.

The second predicted benefit was determined by calcu-

lating an SII value using the measured SRT for the WEDM

processed condition (filled square in the lower panel of

Fig. 3). A corresponding SNR, at the same SII, was then

determined for the unprocessed condition (unfilled circle).

This calculated benefit was about þ2.8 dB.

A final measure of predicted benefit, PBna, was then cal-

culated as the average of these two values, i.e., PBna

� (2.8þ 2.3)/2 �þ 2.5 dB. In this example, the predicted

benefit was positive because the SII predicts a lower SRT

with NR than without.

The predicted benefit was calculated in this way for

each listener, each NR algorithm, and each of the predictive

measures.

The prediction error Dna was then calculated as

Dna ¼ PBna � Bna; (2)

where PBna is the predicted and Bna the measured benefit

for the nth listener with NR algorithm a. Thus in the example

in Fig. 3, the prediction error is Da � 2.5� (�1.9)¼þ4.4

dB.

The larger the prediction error, the worse the predictive

measure works. The error was also considered more serious

if the predicted benefit pointed in the wrong direction, i.e.,

predicted a positive NR benefit when the real benefit was

negative (as in the example) or vice versa. This type of error

was quantified by calculating the un-normalized cross-corre-

lation (Cn) between measured and predicted benefit values

for each listener as

Cn ¼
X

a

Bna � PBna; (3)

where Bna is the measured and PBna the predicted benefit for

the nth listener with NR algorithm a.

2. Statistical tests

A good predictive measure should give distributions of

individual prediction errors (Dna) with medians near zero for

all NR conditions. Friedman’s two-way analysis of variance

by ranks test (MATLAB Statistical Toolbox, v. 8.2) was used to

determine, for each predictive measure, whether there were

any statistically significant rank-order differences (p< 0.05)

between prediction errors across the three NR conditions and

the unprocessed condition, where the prediction error, by

definition, was zero for all participants. This test reveals if a

measure gives prediction errors that deviate systematically

from zero for at least one NR algorithm.

To identify predictions in the wrong direction, a signed-

rank Wilcoxon test (MATLAB Statistical Toolbox, v. 8.2) was

FIG. 3. (Color online) Example of measured (upper panel) and predicted

(lower panel) speech recognition performance for one listener with impaired

hearing, using the WEDM algorithm and the SII predictive measure. Upper

panel: Measured SRT for the unprocessed signals (filled circle) and with the

WEDM processed signals (filled square). A negative “benefit” of �1.9 for the

WEDM was seen in this example. Lower panel: Calculated SII values are

shown as a function of the signal-to-noise ratio (SNR) with a dashed curve for

the unprocessed condition and a solid curve for the WEDM processed condi-

tion. Filled symbols mark the calculated SII values at the measured SRTs.

The unfilled square shows the SNR giving the same SII with WEDM as the

SII at the measured SRT with unprocessed signals. The unfilled circle shows

the SNR giving the same SII with the unprocessed signals as the SII at the

measured SRT with WEDM processing. The horizontal lines in the lower

panel show two predicted values of the SRT change caused by the WEDM,

indicating a positive benefit ofþ2.3 andþ2.8 dB in this example.
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used to test if the median of the cross-correlation Cn, across

listeners, was negative (p< 0.05, one-tailed).

C. Results

The distributions of measured and predicted benefit are

presented in Fig. 4 (for participants with impaired hearing,

HI) and Fig. 5 (for participants with normal hearing, NH).

Predictive measures that did not show any statistically sig-

nificant rank-order differences between prediction errors

across processing conditions (Friedman two-way analysis of

variance by ranks test, p< 0.05) have been marked “OK” in

the figure. These methods did not show prediction errors

deviating significantly from zero for any of the NR

algorithms.

Only one of the predictive measures, the CSII (Kates

and Arehart, 2005), passed this test for both listener groups.

For the listeners with impaired hearing (Fig. 4), the follow-

ing measures also passed the test: STSII, STOI, and mr-

sEPSM.

Table I presents a single-number performance indicator

for each measure. The median prediction error was first cal-

culated across listeners for each NR algorithm, and the larg-

est prediction error among the three algorithms is shown.

The CSII showed prediction errors less than 1 dB for both

groups of listeners. The STOI showed errors less than 1 dB

for the group with impaired hearing.

Statistically significant predictions in the wrong

direction were found for the SII and the ESII for both

groups of listeners, and for the STSII for the NH group.

These measures are clearly not good predictors of the

effect the NR algorithms have on speech recognition in

noise.

FIG. 4. Measured and predicted benefit with three NR algorithms (PSSLP,

WEDM, Wiener) for 20 listeners with impaired hearing (HI). The NR bene-

fit is quantified by the reduction of the SRT in noise, defined here as the

SNR required for 80% correct responses in the adaptive speech test. The

left-most box-plot shows the distribution of measured benefit. The solid hor-

izontal line indicates the median measured benefit. The other box-plots

show the predicted benefit for each measure. Each boxplot shows inter-

quartile values, and the median is represented by the line in the box.

Outliers (þ) are defined as values outside 1.5 times the box length, and the

whiskers extend to the highest and lowest values when the outliers are

excluded. Predictive measures that did not show significant prediction

errors, according to the Friedman test, described in Sec. III B 2, have been

marked “OK.”

FIG. 5. Measured and predicted benefit with three NR algorithms for 10 lis-

teners with normal hearing (NH), displayed as in Fig. 4.

TABLE I. SRT prediction errors for two groups of listeners, 20 with

impaired hearing (HI) and 10 with NH. The median prediction error was cal-

culated across listeners, and the result with the largest magnitude among the

three noise reduction algorithms is shown. Bold numbers indicate that the

prediction errors were significantly (p< 0.05) different from zero for at least

one noise reduction algorithm, as indicated by the Friedman test described

in Sec. III B 2. Underlined numbers indicate that the predicted benefit was

also in the wrong direction compared to the measured benefit and that this

discrepancy was statistically significant (p< 0.05), as indicated by the corre-

lation test described in Sec. III B 2.

Prediction error (dB)

Measure Reference HI NH

SII ANSI (1997) 3.8 2.5

ESII Rhebergen et al. (2006) 6.4 7.0

STSII This paper 1.2 2.4

Glimpses Cooke (2006) 1.4 –1.5

fwSNRseg-a Ma et al. (2009) –1.6 4.1

fwSNRseg-b This paper 1.0 4.8

STOI Taal et al. (2011a) –0.6 –1.6

CSII Kates and Arehart (2005) 0.9 0.4

sEPSM Jørgensen and Dau (2011) –1.2 2.0

mr-sEPSM Jørgensen et al. (2013) –1.2 –5.0
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IV. DISCUSSION

Only one of the predictive measures, the CSII (Kates

and Arehart, 2005), correctly predicted the effects of NR

processing on the speech recognition threshold (SRT) for

both groups of listeners. All other measures showed statisti-

cally significant differences between the predicted and meas-

ured benefit for at least one of the listener groups. The CSII

has shown favorable results in some other evaluations (e.g.,

Ma et al., 2009; Xia et al., 2012). In contrast, Taal et al.
(2011b) found that the CSII performed worse than a majority

of their evaluated measures. That study used NR based on

so-called ideal time-frequency segregation and generally

lower SNRs than the current evaluation, including one

extreme condition with a �60 dB SNR.

Some other measures, using short-time analysis of both

speech and noise (STSII, STOI, and mr-sEPSM), showed

small and statistically non-significant prediction errors for the

HI group (Fig. 4 and Table I). These methods seem to work

better than measures using long-term analysis (SII and ESII).

The NR algorithms increase the short-term modulations

of both speech and noise. These artificial modulations were

probably mostly perceived as distortion and did not improve

speech recognition for the listeners. WEDM was the algo-

rithm that led to the largest increase in long-term SNR (Sec.

II A 3), but this algorithm also produced the largest amount

of distortion.

The SII uses long-term spectra for both speech and

noise, and the ESII uses the long-term spectrum for speech.

These measures clearly overestimated the predicted benefit

of the WEDM processing because they are sensitive to the

improvement in long-term SNR but insensitive to the distor-

tion produced. The ESII was designed to account for the

beneficial effects of short-term noise fluctuations, where the

speech signal is not distorted. This was probably a disadvant-

age for the ESII when applied to NR-processed signals and

might explain why the ESII showed even larger prediction

errors than the standard SII in the current study.

Meyer and Brand (2013) evaluated the standard SII and

five STSII variants, including the ESII, for their ability to

predict speech recognition thresholds in fluctuating noise

with different forms of modulation for listeners with normal

and with impaired hearing. In that evaluation, the ESII per-

formed better than the standard SII. They also found that a

STSII version similar to the current STSII (but using

frequency-dependent time windows) gave slightly better cor-

relations with measured SRTs than the ESII, but there was

still a large unexplained variability among listeners with

impaired hearing.

The measures using correlation between the clean

speech and the processed noisy speech, CSII and STOI, did

not systematically overestimate the performance with

WEDM, probably because they take the speech distortion

into account. The STOI has also shown promising results in

previous evaluations (e.g., Taal et al., 2011a; Xia et al.,
2012).

In practical evaluations of NR algorithms, a measured

improvement of the SRT by about 1 dB would be considered

a clearly interesting and valuable result. The current

evaluation method was designed to be very sensitive in

revealing if a predictive measure might indicate false effects

of NR algorithms.

Other studies (e.g., Ma et al., 2009; Taal et al., 2011b;

Xia et al., 2012) have evaluated predictive measures in terms

of correlation, or deviations, between measured and pre-

dicted speech recognition scores across a wide range of lis-

tening conditions. These more traditional indicators of merit

may be more appropriate if a predictive measure is used

mainly to indicate overall effects of varying acoustic condi-

tions. For that purpose, it might be less important if the

method does not accurately predict small effects of changes

in the signal processing.

The prediction errors in Table I should be interpreted

with some caution, considering how the values were

obtained. The idea was to quantify the predicted benefit of

NR by the horizontal distance (in decibels) between the

curves in the lower panel of Fig. 3, showing the predictive

measure as a function of SNR for NR-processed and for

unprocessed stimuli. However, the two curves are not

exactly parallel because both the NR processing and the

calculation of the predictive measures are affected by the

SNR. In the presented results, each calculated value of the

predicted benefit of NR was the mean of the values at two

different reference SNRs [Fig. 3 lower panel, where the

predicted benefit was (2.8þ 2.3)/2 dB]. Alternatively, the

predicted benefit could have been quantified with reference

only to the measured SNR at the unprocessed condition,

i.e., using only the þ2.3 dB benefit indicated in the lower

panel of Fig. 3. A test using this alternative method

showed results that were very similar to those presented

because the predicted benefit was similar at both reference

SNRs for most predictive measures. However, the predic-

tion errors for the NH group, presented in Table I, would

have been slightly smaller for ESII (but still deviating sig-

nificantly from zero and still with a prediction in the

wrong direction) and slightly larger for fwSNRseg-a,

fwSNRseg-b, and for mr-sEPSM. Thus the conclusions

would have been exactly the same if the alternative

method had been used. The selected method, using the av-

erage of two predicted benefit values, is more balanced

and also tends to reduce the random variability in the pre-

dicted results.

The present study evaluated the effects on speech recog-

nition at a single point on the listeners’ psychometric func-

tion, at the SNR where the listeners achieved 80% correct

responses in the test. This criterion was selected to achieve

SNRs which were reasonably realistic (Smeds et al., 2014)

for hearing-aid users (Fig. 2). Testing at a more conventional

performance level of 50% correct would result in very low

SNRs with the Hagerman speech test material.

To quantify the predicted effects in terms of recognition

scores at a fixed SNR, it would have been necessary to also

consider the transfer function from the measured signal char-

acteristics to a predicted recognition score. As this transfer

function usually depends on the speech material, it might

introduce an additional source of error. With the present

study design, using the change in SRT as performance mea-

sure, the unprocessed condition served as an individual
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reference condition for each listener. This was considered an

advantage, since this design avoided the difficulty of estimat-

ing an optimal transfer function.

V. CONCLUSIONS

Nine predictive measures of speech intelligibility, one

measure in two versions, were evaluated with regard to their

ability to predict the speech-recognition benefit of single-

channel noise reduction processing. Two groups of listeners

participated, one with and one without hearing impairment.

The speech-to-noise ratio was adjusted in an adaptive speech

recognition test so that all listeners achieved equal word rec-

ognition scores across four test conditions with three different

single-channel NR algorithms and one unprocessed condition.

Only one of the predictive measures, CSII (Kates and

Arehart, 2005), correctly predicted the effect of the currently

tested noise reduction algorithms on the speech recognition

threshold within both groups of listeners. In general, measures

using correlation between the clean speech and the processed

noisy speech, as well as other measures that are based on short-

time analysis of speech and noise, seemed most promising.
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