Auditory Reality and Evaluation of Hearing-Aid Function

Florian Wolters, Petra Herrlin, Josefina Larsson, Karolina Smeds • ORCA Europe, WS Audiology firstname.lastname@orca-eu.info

Abstract

Introduction

In previous studies ${ }^{1,2}$, the auditory reality (AR) for older individuals with impaired hearing was investigated. AR was mapped using ecological momentary assessments (EMA) and listening situation classification based on the Common Sound Scenario (CoSS) framework ${ }^{3}$. Results (Fig 1) indicated that test participants (TP) spent almost half of their everyday life in situations without communication or focused listening.

Fig 1 Distribution of listening intentions (CoSS) To date, it is unknown if these findings are specific to the study population and potentially reflect patterns of listening situation avoidance. Consequently, the presented study explores the impact of hearing status on aspects of people's auditory reality.

Method and Analysis

Participants • 65-79 years old

Group	Group size	Hearing status
Hearing-impaired (OHI)	$\mathbf{2 0}(8 \mathrm{M}, 12 \mathrm{~F})$	PTA4: $41-60 \mathrm{~dB} \mathrm{HL}$
Normal-hearing (ONH)	$\mathbf{1 7}(3 \mathrm{M}, 14 \mathrm{~F})$	$0.25-4 \mathrm{kHz}: \leq 25 \mathrm{~dB} \mathrm{HL}$,
		$6 \mathrm{kHz}: \leq 50 \mathrm{~dB} \mathrm{HL}$

Method -

- 1-week EMA using study mobile phone and 7 prompts/day
- Report location, listening task, difficulty to hear, and noise presence/annoyance
- External microphone attached to the phone continuously logging sound levels during EMA hours (8am-8pm)
- Semi-structured exit interview focusing on avoidance of listening situations. Question: "Do you recognize that you avoid listening situations in your everyday life (due to hearing difficulties)?"

Analysis

A publicly available tool for Bayesian analysis of EMA data ${ }^{4}$ was used to investigate AR group differences. Results are visualized in terms of situation probabilities (Fig 2-3) for location/CoSS categories or logit units (Fig 4-5) for ordinal rating categories. Credibility of group differences is also presented. Red areas in the figures mark differences with credibility values above 0.8.

Conclusions and Outlook

Conclusions

EMA data: Similar listening tasks, noisiness, and sound levels, but OHI TPs perceived hearing in these situations as more difficult.

Retrospective assessments: OHI TPs report significantly more avoidance of loud (e.g., concert) or noisy (e.g., multiple talker) situations.

Outlook

Data for young normal-hearing TPs have been collected as part of this study, and age effects will be analyzed.

More research needed to find outcome dimensions that may indicate avoidance patterns and other important group differences in AR.

Additional research needed to understand the impact of avoidance of certain listening situations.

Results

Location (Fig 2)

- Most reports made indoors at home (both groups)
- OHI higher probability of being indoors at home and lower probability of being indoors in public
- No difference for outdoors and transport situations

Listening task (Fig 3)

- Everyday listening tasks similar both groups
- ONH higher probability of having "Conversation via phone"
- OHI higher probability of being in "Monitoring surroundings" situations

Difficulty to hear (Fig 4)

- OHI report higher listening difficulty for all CoSS categories except "Focused listening (FL) to live sounds"
- High credibility (>0.8) for all differences

Noise annoyance (Fig 5)

- $\sim 80 \%$ reports in quiet or "not at all" annoying noise
- OHI more annoyed by noise in "FL to live sounds"

Sound levels (Fig 6)

- Long-term average C-weighted sound levels
- Median sound level: 58 dB (C)
- No significant difference between groups ($\mathrm{p}>0.05$)

Avoidance (Fig 7)

Both groups reported avoidance

- 70% of OHI participants
- 24% of ONH participants Most commonly reported avoided situations
- Focused listening to live sounds (concert etc.)
- Multiple talker / noisy situations

${ }^{1}$ Jensen, Hau, Lelic, Herrlin, Wolters, Smeds, (2019). Evaluation of auditory reality and hearing aids using an Ecological Momentary Assessment (EMA) approach. 23rd International Congress on Acoustics (ICA), Aachen, Germany.
${ }^{2}$ Smeds, Gotowiec, Wolters, Herrlin, Larsson, Dahlquist (2020). Selecting scenarios for hearing-related laboratory testing. Ear Hear, 41, 20S-30S.
${ }^{3}$ Wolters, Smeds, Schmidt, Christensen, Norup (2016). Common sound scenarios: A context-driven categorization of everyday sound environments for application in hearing-device research. J Am Acad Aud, 27(07), 527-540.
 Digit Health, 5, 16.

